Introduction

What is QM/MM?

- Hybrid method that QM (Quantum mechanics) and MM (molecular mechanics) calculation schemes
- The system is divided into two regions
 - ♦ QM and MM regions
 - ♦ Regions are designed based on compromise in calculation time and accuracy

Why use QM/MM?

- The system is too large to use ab initio calculations
- MM calculations do not give the "correct" answer
- Processes involving change in electronic structure

How QM/MM methods differ?[1]

Treatment of the junction between QM and MM regions

Use of link atoms

- Hydrogen is ?inserted? along the bond contained in the QM/MM junction
 - ♦ Placed closed to the MM atom
 - Behavior is changed based on the identity of the MM atom

Localized orbitals

- Specially designed local orbitals assigned to boundary QM and MM atoms^[2]
 - ♦ maintain closure of QM system
 - ♦ local orbitals are designed and tested based on empirical data
 - no need for extra atoms

Pseudopotential methods

- MM-bounded boundary QM atoms are assigned a special basis set and potential [2]
 - ♦ mimic correct covalent bonding scheme
 - ♦ designed from small system models
 - ♦ no need for extra atoms

Methods of energy calculations

Introduction 1

Subtraction Scheme

ONIOM - (our own n-layered integrated molecular orbital and molecular mechanics)

Method developed by Morokuma and co-workers which allows for different regions of a system to be calculated at different levels of theory and combine to produce a consistent energy expression. $\frac{[3]}{}$

E(ONIOM2) = E(High, region 1) + E(low, regions 1 and 2) ? E(low, region1) E(ONIOM3) = E(High, region A) +E(Medium, regions A and B) + E(Low, regions A, B and C) ? E(Medium, region A) ? E(Low, region A and B) www.gaussian.com/g_tech/g_ur/k_oniom.htm

Summation scheme

Example:

$$\begin{split} E_{total}(1 \text{ and } 2) &= E_{QM}(1 \text{ and } 2) + E_{QM/MM, \text{ ele}}(1 \text{ and } 2) + E_{QM/MM, \text{nucl}}(1 \text{ and } 2) + E_{QM/MM, \text{vdw}}(1 \text{ and } 2) + E_{QM/MM, \text{covalent}}(1 \text{ and } 2) + E_{MM}(2)\underline{^{[2]}} \end{split}$$

The way in which the electrostatic interaction between the QM and MM regions are described

Subtraction Scheme 2

Mechanical embedding

Polarization from MM electrostatics comes from interpolation scheme used to combine energy terms.

Electronic embedding

QM polarization form MM electrostatics is explicitly considered.

Linear-scaled Eward Method

Particle-mesh Eward technique with periodic boundary conditions[4]

GSBP - generalized solvent boundary potential

Small region of the system surround QM region is treated explicitly. The remainder of the system is fixed and described in terms of solvent-shielded static field and a Poisson?Boltzmann reaction field. [4]

Case study

Project Introduction

Goals

- Simulate the ¹H and ²⁰⁵Tl NMR spectra based MM and QM/MM refined x-ray crystallographic and NMR structures
- Understand how differences in the structure lead to different chemical shifts
- Gain insight into molecular structural information directly from experimental chemical shifts

The G-quardruplex Model System

Case study

ABS:QM/MM

- Model System for the development of ²⁰⁵Tl NMR
 - ♦ All classes of biomacromolecules bind monovalent cations
 - ♦ Na⁺ and K⁺ are poor spectroscopic nuclei
 - ♦ Tl⁺ is an excellent mimic of K⁺
 - ♦ $^{205}\text{Tl}^{+}$ is a spin & nucleus with a large gyromagnetic ratio & $^{1}\text{H} > ^{19}\text{F} > ^{205}\text{Tl} > ^{31}\text{P}$
- G₄T₄G₄ is the telomeric sequence from the ciliate Oxytricha Nova
 - ♦ Homodimeric G-quadruplex with diagonal loops
 - ♦ Contains four G-quartets, each composed of four guanine bases
 - Exceptionally stable and structures have been solved by NMR and X-ray crystallography
 - ♦ Binds 3-5 monovalent cations

Experimental NMR Spectra [5]

Quantum Mechanics / Molecular Mechanics (QM/MM) Hybrid Methodology [6][7]

Two-layer ONIOM-Electronic Embedding (EE) (Morokuma), G03. in conjunction with gauge independent atomic orbital method (GIAO Method)

QM = DFT B3LYP 6-31g*
MM = Amber Force Field

MM with symmetric restraints optimizations

www.gaussian.com/g tech/g ur/k nmr.htm

www.gaussian.com/g tech/g ur/k oniom.htm

¹H NMR simulations

²⁰⁵Tl simulations

1H NMR simulations 6

²⁰⁵Tl benchmarks^[8]

205Tl simulations

¹⁵N simulation of NH₄⁺ bound G-quadruplex^[9]

Case study conclusions

- We have completed NMR simulations of G-quadruplet at the QM/MM level where the influence of the surrounding environment is explicitly considered
- ¹H-NMR is found to be extremely sensitive to the configuration of the system, useful for gaining structural insight
- Stacking greatly impacts the H NMR Spectra
- The ions most exposed to the loops have different magnetic environments most likely due to structural disorder
- All-electron (UGBS) simulations of ²⁰⁵Tl NMR spectra provide valuable insight on the origin of chemical shifts

Further Reading

H. Hu, W. Yang / Journal of Molecular Structure: THEOCHEM 898 (2009) 17?30 File:H Hu papper 2009.pdf

H. M. Senn, W. Thiel. Current Opinion in Chemical Biology 2007, 11:182?187 File:Senn paper.pdf

M. Svensson, S. Humbel, R.D.J. Froese, T. Mastubara, S. Sieber, and K. Morokuma, J.Phys.Chem., 100, 19357 (1996). File:Svensson paper.pdf

Further Reading 8

R. A. Friesner and V. Guallar, Annu. Rev. Phys. Chem. 2005. 56:389?427 File:Friesner.pdf

References

- 1. 2 Eduardo M. Sproviero et all. Photosynth Res. In Press.
- 2. ? 2.0 2.1 2.2 H. Hu, W. Yang / Journal of Molecular Structure: THEOCHEM 898 (2009) 17?30
- 3. ? M. Svensson, S. Humbel, R.D.J. Froese, T. Mastubara, S. Sieber, and K. Morokuma, J.Phys.Chem., 100, 19357 (1996).
- 4. ? 4.0 4.1 H. M. Senn, W. Thiel. Current Opinion in Chemical Biology 2007, 11:182?187
- 5. 2 Michelle L. Gill, Scott A. Strobel and J. Patrick Loria Am. Chem. Soc. 127, 16723-16732 (2005)
- 6. 2 J.A. Gascon and V.S. Batista, Biophys. J. 87, 2931-2941 (2004)
- 7. 2 J.A. Gascon, E.M. Sproviero and V.S. Batista, J. Chem. Theor. Comput. 2, 11-20 (2005)
- 8. 2 J. Hinton. (1992) Ann Rep NMR Spectr 13, 211
- 9. 2 Juli Feigen et al (2001) Methods in Enzymology Vol 338,400

References 9