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Continuum solvation models provide appealing alternatives to
explicit solvent methods because of their ability to reproduce
solvation effects while alleviating the need for expensive sam-
pling. Our previous work has demonstrated that Poisson-Boltz-
mann methods are capable of faithfully reproducing polar explicit
solvent forces for dilute protein systems; however, the popular
solvent-accessible surface area model was shown to be incapable
of accurately describing nonpolar solvation forces at atomic-length
scales. Therefore, alternate continuum methods are needed to
reproduce nonpolar interactions at the atomic scale. In the present
work, we address this issue by supplementing the solvent-acces-
sible surface area model with additional volume and dispersion
integral terms suggested by scaled particle models and Weeks-
Chandler-Andersen theory, respectively. This more complete non-
polar implicit solvent model shows very good agreement with
explicit solvent results and suggests that, although often over-
looked, the inclusion of appropriate dispersion and volume terms
are essential for an accurate implicit solvent description of atomic-
scale nonpolar forces.

mean force | solvent-accessible surface area | apolar | hydrophobic

he accurate modeling of solvation is crucial for understanding

biomolecular dynamics and energetics. Numerous computa-
tional models have been developed for solvation modeling, each
offering varying degrees of detail in exchange for computational
efficiency. Explicit solvent methods provide atomic resolution of
individual solvent molecules; however, the computational cost
associated with obtaining converged properties of large systems can
quickly become unmanageable. Implicit solvent models, on the
other hand, lower the cost of such calculations through an approx-
imate continuum representation of solvation properties.

In general, implicit solvent methods separate solvation energetics
into polar and nonpolar contributions. Poisson-Boltzmann (PB)
(1-4) and generalized Born (5-10) models are two implicit solvent
methods often used to approximate polar solute—solvent interac-
tions by representing the solvent with a simple dielectric continuum
model. Solvent-accessible surface area (SASA) models are popular
choices for nonpolar solute—solvent interactions; these models
assume the nonpolar solvation energy contributions are propor-
tional to surface area (11-17), an argument loosely based on scaled
particle theory (SPT) (18, 19). However, the original scaled particle
theories (18, 19), and more recent studies by several other groups
(20-27), indicate that cavity creation work should depend on both
solvent-accessible volume (SAV) and SASA, with a crossover to
SASA dominance at large solute sizes. Additionally, it has been
suggested that another failing of SASA-based nonpolar solvation
models is the lack of appropriate terms to account for attractive van
der Waals interactions between solvent and solute atoms (28-39).
The above inconsistencies are some possible sources for the wide
range of mutually inconsistent SASA “surface tension” parameters
(11-13, 40, 41) currently used to model nonpolar interactions. As a
solution to this problem, there have been attempts to decompose
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nonpolar interactions into repulsive and attractive components that
can be modeled separately (24, 28-33, 39, 42).

There is particular interest in the ability of implicit solvent models
to provide atomic solvation forces with sufficient speed and accu-
racy for implementation in molecular dynamics simulations (43—45)
and other “high-throughput” (15, 16, 46) calculations. However,
most models are tested by using only global quantities such as
solvation energies (13, 28-33, 41) or simulation rms deviation and
stability (33, 44). Although these global metrics provide a “low
resolution” assessment of the model quality, they fail to directly test
the quantities most relevant to the dynamics simulation: forces.
Therefore, as in our previous analyses (47) and similar force-
matching multiscale methods used by others (48), we compare
mean solvation forces from the explicit solvent simulation with
forces from the implicit solvent models.

Previously, we demonstrated that, given appropriate parameters,
PB methods are capable of reproducing explicit solvent polar
atomic solvation forces with high accuracy for a simple protein
system (47). However, we also observed that the popular SASA-
based nonpolar force model was unable to accurately reproduce
explicit solvent nonpolar solvation forces at atomic resolution. In
what follows, we construct a nonpolar solvation force model similar
to those just discussed, based on SPT and Weeks—Chandler—
Andersen (WCA)-like integral-based methods. The results of this
model are then compared with solvation forces obtained from
explicit solvent simulations of a dilute protein to assess the accuracy
of these very different nonpolar solvation methods.

Theory

As described by Roux and Simonson (49), the potential of mean
force (PMF) of a solute in configuration x can be decomposed into
polar W® and nonpolar W) terms according to the formulae

fe —BLUS(y)+ U<'“I’)(vcy>]a}y

— BWp)(x)
e o 1
feBU )(y)dy (1]
— BLUS) () + UOP)(x,y) + UP(x,y)]
efﬁW<p>(x) _ f@ Yy X,y X,y dy 2]
fe —BLUE)(y)+ U<“P)(x,y)]dy ’

where B = (kgT)™! is the inverse thermal energy, U®®) is the
solvent-solvent potential energy, U™ is the nonpolar portion of
the solute—solvent interaction energy, U® is the polar portion of the
solute—solvent interaction energy, and y is a high-dimensional
coordinate vector for the solvent degrees of freedom. In the present
work, we are concerned only with the nonpolar force (Eq. 1); see
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Wagoner and Baker (47) for a comparison of polar forces with PB
models. The MF on atom i can be obtained by differentiation of the
PMF with respect to x;

op) <3U(HP)>
Finp (X) = - H [3]
GX,- np

where the nonpolar ensemble average of a quantity g(y) is denoted

fq(y)e BLU) (y)+UMP)( xy)]dy
( >np f — BLUSS)(y) + UMP)(x, y)]dy . [4]

We can rewrite this ensemble average in terms of a density for
solvent at position y given the solute in configuration x:

e~ BLU)+UtD(x)]

p(x, y) = fe~BLUMW+UMxy)]gy (51
such that the nonpolar ensemble average of g is {(¢)np = [q(y)p(X,
y)dy. On the basis of WCA perturbation theory (42), Levy and
coworkers (32, 33) have argued for a nonpolar solvation PMF of the
form WP)(x) = weP)(x) + w@(x), where w°P) represents
contributions to W) from repulsive (usually hard sphere) solute—
solvent interactions and w® is an integral-based term describing
contributions from attractive solute—solvent interactions. Mean
solvation forces can be calculated in the usual manner from this
PMF decomposition, F"P(x) = fP(x) + £*")(x), and related to
repulsive and attractive components of the potential energy func-
tion by F,P)(x) = — (QUEP)/0x;)np — (QUEW/0X;)p. The current
work uses very similar decompositions based on SPT descriptions
for £ and WCA-like integrals for £*V. These models are
presented in more detail in the following sections.

Repulsive Nonpolar Solvation Interactions. We approximate the
contributions to the PMF and MF from repulsive solute—solvent
interactions by assuming a hard-sphere reference system described
by a SPT model (18, 19) that includes the volume and area terms:

W(rep)(x) =~ yA(x) + pV(x), [6]

where v is a solvent surface tension parameter, 4 is a SASA, p is a
solvent pressure parameter, and V' is a SAV. As mentioned above,
the form of this function follows “hard-sphere solvation” theory
(50, 51) and is based on the ideas of SPT (18, 19) and other models
with similar limiting behavior (20-23). We note that the use of both
area and volume terms differs from the more popular area-only
treatment of most nonpolar implicit solvent models with some
exceptions (see citations above). Models such as Eq. 6 have been
generalized for practical use with atom-type-specific y parameters
(12, 14); however, we have observed that use of these per-atom
terms does not mgmﬁcantl){ improve the accuracy of models that
include an appropriate £*¥ term.

We represent our SPT area A and volume V in terms of the
solvent-accessible definition of Lee and Richards (52) and
Richmond (53). For this definition, the SAV and SASA are
based on a characteristic function 6(x, y)=II\_,6,(x, y) defined
as a product of per-atom characteristic functions 6;. These
per-atom functions can be written in terms of the Heaviside
step function H, e.g., a Boltzmann factor for a hard-sphere
solvent-solute potential, 0;(x, y)= Y H(|ly—xi|— 05— 03),
where oy is the solvent radius and o; is the radius of solute atom
i. The characteristic function defines a solvent-inaccessible
volume V(x) by V(x) = [ao(l — 6(x, y))dy, where Q is the
problem domain of interest. The surface area A(x) of this
volume can be determined by a number of analytic (53, 54) and
numerical (55, 56) approaches; we use the Shrake—Rupley
numerical approximation (56) implemented in the APBS soft-
ware package (57).
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Forces are usually calculated from SASA/SAV models by dif-
ferentiation of the free energy with respect to atomic displacements
(5,7, 10), e.g.

dA (x) aV(x)
(rep) — f(area) (vol) — _

BP0 = (7900 + 10000 = =y = == p S )

Volume-based force terms have a simple definition:

v a6(x, y) ae<x Y 1

£l 1><x>=pf oo dy=p| 0 11 e vay.

Q ! a N e
[8]

Note that

20:(x, y) Y- X
= by - x| - o - o) 9]

THE Iy = xi

where §(x) is the Dirac delta function. This allows us to rewrite
the volume derivative as an integral of the unit vector from the
atom center over I';(x), the solvent-accessible surface of atom i:

f(VOl)(x) = —Pf ”y — H 1_[ 0; (x y)dy
|ly—xil|= o5+ oi =1,j#i
y— X
=p f = dy. [10]
Dyl

We use the Shrake—Rupley SASA algorlthm (56) to determine
I'i(x) for each atom. The SASA derivatives in f*"*” can be evaluated
in a number of ways, many of them analytlc (53-55, 58, 59).
However, these expressions tend to be rather complicated and are
beyond the scope of the current discussion. We calculate SASA
derivatives by a crude numerical finite differencing scheme de-
scribed in Computational Methods.

Attractive Nonpolar Solvation Interactions. We supplement the
repulsive contributions to the nonpolar mean solvation forces
by the WCA-like (42) attractive integral component:

W(atl)(x) = I_)J U(all)(x’ Y)g(rep)(X, y)dy [11]
Q

gP(x, y)dy, [12]

aU(x, y)
(att) - - = =
£ (x) P f ox,

Q

where gP) is the distribution function for the reference repulsive
solute—solvent potential. The MF expression follows from Egs. 3-5,
and the relationship between the density and the distribution
functions: p(x, y) = pg°P)(x, y), where p is the bulk density. This
derivation of the MF is based on Egs. 3-5, rather than a simple
differentiation of Eq. 11. As such, our expression for £ does not
include a derivative of g(®P). Note that Eq. 11 is based on a
perturbative approximation to the true PMF (42), whereas Eq. 12
for f@ js an “exact” expression for the MF. Like most perturbative
definitions of the force, Eq. 12 is expected to be accurate under
conditions away from phase transitions (e.g., de-wetting), which
might cause rapid changes in g(P).

Following models by Gallicchio and coworkers (31-33), we
further assume that the reference distribution function can be
approximated by our solvent-accessibility characteristic function
g"P)(x, y) ~ 6(x, y). This potentially severe approximation assumes
a uniform solvent distribution outside the solvent-accessible sur-
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Table 1. Optimized 6/12 and WCA implicit solvent nonpolar MF parameter values and goodness-of-fit metrics

MF model 6/12

MF model WCA

Parameters Attractive Repulsive Total Attractive Repulsive Total
a5, A 0.89 [0.87-0.94] 1.14 [1.04-1.26] 1.55 [1.47-1.8] 0.80 [0.6-0.87] 1.14 [1.05-1.24] 1.13 [1.04-1.20]
v, cal'mol~1-A-2 — 20 (1) 5(1) — 5(1) 3(1)
p, calmol~1-A-3 — 64 (1) 38 (1) — 35(1) 36 (1)
r 0.91 0.84 0.89 0.95 0.89 0.90
R 0.95 0.92 0.94 0.95 0.94 0.95
X% 1073 kcal>mol-2-A-2 9.58 31.4 6.99 0.562 4.95 4.50

Separate fits of nonpolar solvation MFs were performed as follows: Attractive, a comparison of attractive implicit (Eq. 12) and attractive explicit; Repulsive,
a comparison of repulsive implicit (Eq. 7) and repulsive explicit; and Total, a comparison of the total implicit (Eq. 18) and total explicit nonpolar MFs. Where
applicable, standard errors are presented in parentheses; 99% confidence intervals are presented in brackets.

face. Clearly, such an assumption is questionable for a condensed
phase system; however, it makes the same uniform density approx-
imation as PB polar solvation models (49) and is necessary to avoid
more complicated and expensive integral equation theories (60).

The definitions above assume a decomposition of the solute—
solvent interaction potential into attractive integral and repulsive
parts: U™P)(x,y) = U@(x,y) + UTeP)(x, y). In general, it is assumed
that the nonpolar solute—solvent potential is pairwise such that the
total solute—solvent interaction energy can be decomposed into the
interaction of individual atoms with the solvent: U™)(x, y) =
Eﬁlu,(np)(x,-, y). In particular, we will consider the Lennard-Jones
(LJ) solvent-solute interaction potential (61) formulated as

u™(x. y) = & [ ( it US) : 2( 7it US>6]

R A R I =l 1
where ; measures the depth of the attractive well at |x; — y|| = o; +
o; and o;, oy are the solute atom and solvent radii, respectively,
introduced above. The LJ potential can clearly be divided into
attractive 1™ and repulsive u{"P portions in a number of ways; we
will consider two specific decompositions based on the models of
Levy and coworkers (32, 33) and the original WCA theory (42).
First, we will consider a “6/12” decomposition that splits the
individual inverse power potentials (33):

o+ a,\°
uf* 02 (x, y) = —28<7” N y”> [13]
-
o; + o, 12
ul(rep,G/IZ)(xi, y) = 8(7”)( - yﬁ) . [14]
'3

We will also examine a “WCA” decomposition of the forces into
purely attractive integral and repulsive components (32, 42):

—g; I =yl < oi + o
uf Ve (x;, y) = { Wi y) Ix -yl =0+ o, -
L
ur(x, y) + & llx —y| < oi+ o
ey, y = |t 3l = oo 1160

Regardless of the specific decomposition used above, we will
assume that the repulsive portion of the MF [f("*P)] can be modeled
by the hard-sphere SPT-like models introduced above (see Eqgs. 1
and 7). Both WCA (42) and inverse power potential (62) repulsive
terms have been related to hard-sphere models [although the WCA
model generally provides better agreement (42, 60)], making the
approximation of w{™P by these SPT-like models plausible.
We propose the following models for nonpolar PMFs

N

WER(x) = yA(x) + pV(x) + p 2 J uf*(x;, y)0(x, y)dy
Q

i=1

[17]
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A (x - X;
Fov) = —y A —pf .
r

T—TA
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" lly — xi

0X;

N (att)

- aui (Xi’ Y)

~p2 f T xoydy. 18]
i=1Jq ’

In what follows, we compare the F"™™ values obtained with 6/12 and
WCA models for u®® against explicit solvent simulation results.

Results and Discussion

The following sections compare the implicit solvent models pre-
sented above (Egs. 17 and 18) to mean solvation forces from explicit
solvent simulations. Recall that the implicit solvent models differ in
their choice of LJ decomposition: 6/12 with u{*" defined by
u™8/12) (see Eq. 13) and WCA with u{*" defined by u{**V» (see
Eq. 15).

The implicit solvent nonpolar MF models were parameterized by
optimization of the solvent radius oy, solvent surface tension v, and
solvent pressure p. Goodness-of-fit for parameter optimization was
measured by the mean squared error x? between the implicit and
explicit nonpolar MF components. The mean squared error was
calculated by using the 3m N pairs of force components, where N =
2,114 is the number of atoms and m = 8 is the number of intestinal
fatty acid binding protein (IFABP) conformations tested. The
solvent radius was optimized by a simple line search, whereas the
v and p parameters were optimized by linear-in-parameters fitting
for each oy value. Differences between models were assessed by
using x? values and a standard F test (63) at the 99% confidence
level. The choice of oy as an adjustable parameter was motivated by
the previous work of Levy et al. (32), the desire to preserve LJ
parameters from the explicit solvent force fields, and the aesthetic
choice of choosing a fixed “bulk” value for solvent density.

The following sections “build up” our model for nonpolar
interactions (Eq. 18) from the popular SASA-only model and
thereby demonstrate the importance of the SAV and attractive
integral terms. Our standard for all subsequent discussion is the full
model (Eq. 18), which includes both attractive integral (Eq. 12) and
repulsive SPT (Eq. 7) contributions.

SASA-Only Model. The SASA-only model (£ in Eq. 7) is inca-
pable of accurately reproducing nonpolar solvation forces extracted
from explicit solvent simulations. This conclusion is supported by
the data in Fig. 1 and in Table 3 and Fig. 2, which are published as
supporting information on the PNAS web site and present data
comparing SASA-only, SAV-only, and full SPT nonpolar solvation
force models with the total explicit solvent nonpolar force. Even
with the unrealistic solvent radius of 2.2 A at the end of our o, search
interval, the mean squared error 2 = 19.6 X 103 kcal>mol~>A 2
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Fig. 1. Comparison of explicit and implicit solvent forces using the optimal
parameters in Table 1 for the WCA model (A) and the optional parameters in
Table 3 for a SASA-only model (B).

is much larger than the other models and the Pearson correlation
coefficient R = 0.63 is very low.

SPT Model. The full SPT model (Eq. 7) includes both SASA and
SAV terms and provides significantly better agreement between
implicit and explicit nonpolar solvation forces than SASA-only.
Comparison of all goodness-of-fit parameters for the SASA-only
model with full SPT model (see Table 3) shows dramatic improve-
ment when both SASA and SAV terms are included. Application
of the F test indicates that the full SPT model provides a substantial
reduction of the mean squared error x*> with respect to the
SASA-only model with significance well beyond the 99% confi-
dence level. Likewise, visual comparison of implicit—explicit force
correlation plots in Fig. 2 4 and C clearly demonstrates the
superiority of the full SPT model.

Interestingly, Table 3 shows that SASA coefficient for the full
SPT model (y = 3 + 1 cal'mol~*XA~2) is much smaller and more
poorly constrained than for the SASA-only model (y = 17.1 = 0.7
cal'mol~-A~ 2) and brings the importance of this term into ques-
tion. Table 3 also includes data for an SAV-only version of the SPT
model; graphical comparison of this SAV-only model and the
explicit solvent data are presented in Fig. 3. These data show that
the SAV-only model reproduces the explicit solvent nonpolar
simulation data with nearly the same fidelity as the full SPT model.
Although there is a small, but significant (based on 99% confidence
F test) reduction in the full SPT model x*> compared with the
SAV-only model, it is clear that the SAV term provides the largest
contribution to the SPT modeling of the nonpolar solvation force.
This conclusion is inconsistent with popular SASA-based models of
nonpolar solvation forces on the atomic-length scale but agrees with
more complete theories of nonpolar solvation (18-27).

Full Model. Although the full SPT model clearly provides a signif-
icant improvement over the popular SASA-only model, it does not
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include the dispersive attractive interactions that have been dem-
onstrated to play an important role in nonpolar solvation energetics
(28-38). Given the importance of these attractive contributions, it
is not surprising that the full model (Eq. 18) provides an additional
improvement beyond SPT for the representation of nonpolar
solvation forces. Both visual (Fig. 1) and quantitative (Tables 1 and
3) comparisons show a substantial improvement in agreement
between the implicit and explicit solvent forces when the SPT model
is supplemented with an attractive integral term to give Eq. 18.
Application of the F test to x? values of the full (6/12 or WCA) and
SPT-only models indicates that this improvement is statistically
significant to at least a 99% confidence level.

Table 1 also includes comparisons between repulsive and attrac-
tive terms in the implicit solvent model with the corresponding MF
components from the explicit solvent data. The high correlation (R)
and regression (r) values for these components indicate that the
individual components of the implicit solvent model agree well with
the explicit solvent data. Interestingly, the 6/12 model produces
much higher mean squared errors for the repulsive component than
the WCA model; this and other differences between the two
implicit models will be discussed in more detail below.

Given the limitations of any implicit solvent model, it is not
unexpected that our optimal o; solvent radius parameter (1.13 A for
WCA and 1.55 A for 6/12) is different from the traditional water
probe radius of 1.4 A. Fig. 3, which is published as supporting
information on the PNAS web site, illustrates that o, (with sepa-
rately optimized values of y and p) is relatively loosely constrained
by the data and can be changed to 1.4 A with only a modest increase
in X Therefore, it is possible that oy could be fixed at its traditional
1.4-A value w1thout a substantial increase in the overall modeling
error. Alternatively, one could fix oy and optimize the solvent
density p or the solvent-solute LJ parameters instead.

Comparison of the 6/12 and WCA Models. It is well known (42, 60)
that the WCA decomposition provides a much better model for use
with a hard-sphere (or SPT) reference system than a 6/12 decom-
position. However, the 6/12-based attractive term is somewhat
simpler and has been used in previous studies by Gallicchio and
Levy (33) where its use appeared to have little consequence on the
accuracy of the predicted energies.

Qualitative differences between the two decomposition schemes
are discernible in Fig. 4, which is published as supporting informa-
tion on the PNAS web site, with overall scatter noticeably smaller
for the WCA decomposition. Table 1 presents quantitative differ-
ences between the models. The most important difference is the
significantly (based on 99% confidence level F test) lower mean
squared error for WCA compared with 6/12. Table 1 also indicates
that WCA does a much better job than 6/12 at reproducing the
individual attractive and repulsive force components. Despite these
qualitative differences, both models predict very low contributions
from SASA to the repulsive free energy. In particular, the surface
tensions for these models (y ~ 3-5 cal'mol~!-A~2) are much smaller
than popular microscopic surface tension definitions (y ~ 30125
cal'mol~-A~2) (11-13, 40, 41) or the “macroscopic” tension of y ~
75 cal'mol~1-A~2 (13, 20). However, it is worth noting that our vy
values are comparable to the 9 cal'mol~1-A~2 obtained by Gallic-
chio et al. (35) for linear alkanes.

Application to Hydrocarbon Solvation Free Energies. At the sugges-
tion of a reviewer, we applied our WCA decomposition method-
ology to quantify the solvation energies of a series of small
hydrocarbon compounds. Unlike large macromolecular complexes,
these small hydrocarbons are amenable to solvation free energy
calculations (35, 64) and therefore provide a classic framework for
testing the validity of the proposed PMF expression (Eq. 17).
The work of Gallicchio ef al. (35) provides a detailed decompo-
sition of hydrocarbon solvation free energies into attractive and
repulsive contributions. To facilitate direct comparison, we used

Wagoner and Baker
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Table 2. Comparison of total solvation energies (kcal/mol) for
small alkane solutes

Compound WCA 1.13 WCA 1.04 OPLS AMBER Exp.
Methane 2.82 2.10 2.40 2.69 2.00
Ethane 3.53 2.55 2.63 — 1.83
Propane 3.99 2.77 2.89 3.02 1.96
Butane 4.33 2.96 3.21 3.19 2.08
Pentane 5.13 3.50 3.78 — 2.33
Hexane 5.56 3.79 3.78 — 2.49
Isobutane 4.55 3.04 3.03 3.27 2.52
2-Methylbutane 5.04 3.24 3.51 — 2.38
Neopentane 497 3.37 3.23 — 2.50
Cyclopentane 3.89 2.40 2.80 — 1.20
Cyclohexane 4.83 2.97 2.34 — 1.23

W(CA energy values were obtained by using the methods described with
os = 1.13 and 1.04 A. opLs energies were taken from Gallicchio et al. (35) by
using values in table 2 of their paper. AMBER energies are from Shirts et al. (64),
"van der Waals" valuesin table Il of their paper. Experimental (Exp.) values are
from table VII of Cabini et al. (65).

their set of hydrocarbon compounds (see Table 2 for the list). All
acyclic alkane structures were modeled in the trans conformation;
the chair conformer of cyclohexane was used in this study. We
applied the WCA form of Eq. 17 to these hydrocarbon structures
by using the same procedure as the protein system (see Computa-
tional Methods). The implicit solvent model was tested for two
solvent probe radii; the results are presented in Table 2. Initially, we
used the force-optimized WCA parameters of oy = 1.13 A pre-
sented in Table 1. As shown in Table 2, these force-optimized
parameters systematically overestimate solvation free energies
(OPLS-AA, AMBER, or experimental) for all alkanes. In particular,
comparison with the acyclic AMBER test cases gave a Pearson
correlation coefficient of R = 0.93 but a relative error of » = 1.46;
comparison with the larger OPLS-AA test set gave a Pearson corre-
lation coefficient of R = (.75 and a relative error of r = 1.46. As
described (62), nonpolar solute experimental solvation energies
were overestimated for all explicit and implicit models tested.
The availability of detailed values for alkane w(°P) and w@ in
the work of Gallicchio er al. (35) allowed us to assess the cause of
solvation free energy overestimation when using our WCA-based
model with oy = 1.13 A. A detailed comparison of solvation energy
components (see Table 4, which is published as supporting infor-
mation on the PNAS web site) demonstrates that our WCA model
with oy = 1.13 A systematically overestimates both repulsive and
attractive components of the solvation free energy. Although it is
not optimal to compare the results of our AMBERY4-parameterized
model with explicit solvent results from the opPLS-AA force field,
such comparison is sufficient to demonstrate the sources of over-
estimation with oy = 1.13 A. Furthermore, comparison of OPLS and
AMBERY4 solvation energies calculations by Shirts ez al. (64) revealed
very similar energies for small nonpolar side-chain analogues. The
overestimation of both energy components suggests reduction of
the probe radius o, to decrease the repulsive (by decreasing SAV
and SASA) and attractive (by integrating over more favorable
regions of the potential) portions of the solvation free energy.
Recall that our optimal choice of oy = 1.13 was taken from a 99%
confidence interval of 1.04 = gy = 1.20 (compare Table 1 and Fig.
3). To examine the effect of oy on agreement with explicit solvent
results, we recalculated solvation energies by using our WCA
model, oy = 1.04 A, and the correspondmg optimal y = 3
cal'mol !+ ‘A2 and P = 35 cal'mol~-XA~3. Energy results for g, =
1.04 A are presented in Table 2; free energy components are
presented in Table 4. Comparison of the o, = 1.04-A results in
Table 2 with the other explicit solvent energies now gives a Pearson
correlation coefficient of R = 0.91 and a relative error of r = 1.01
for AMBER and a Pearson correlation coefficient of R = 0.83 and
a relative error of r = 0.98 for OPLS-AA. When only acyclic alkanes
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are considered in the OPLS-AA comparison, the Pearson correlation
coefficient is R = 0.96 and the relative error is » = 0.97. In short,
there is a choice of o, within the 99% confidence interval of the
force-optimized value, which reproduces both AMBER and OPLS
alkane solvation energies with good accuracy.

The detailed comparison of solvation energy components in
Table 4 provides additional support for our proposed use of both
SAYV and SASA terms in the repulsive (or cavity) component of the
free energy. In particular, the SAV/SASA model for wP) (Eq. 6
correlates very strongly (Pearson R > 0.99 for o, = 1.13 or 1.04 A)
with the OPLS-AA repulsive explicit solvent contributions from the
work of Gallicchio et al. (35). This agreement indicates that whereas
a SASA-dominated nonpolar model may be sufficient to reproduce
repulsive contributions to solvation free energies it is not necessary.
This result is somewhat surprising, because many models predict a
“crossover” to SASA-dominated cavity formation energies at mac-
roscopic length scales (20-27). However, given the relatively small
size of the alkanes tested here, it is possible that we have not yet
reached the length scales where such a crossover might occur.

Conclusions

We have demonstrated that the popular SASA model cannot
reproduce nonpolar solvation forces from explicit solvent simula-
tions; however, an implicit solvent model including both WCA-like
attractive integral and full SPT (with both SAV and SASA com-
ponents) repulsive terms gives very good agreement. Additionally,
we have shown that parameters of the WCA-like implicit model
optimized against solvation MFs are also capable of reproducing
solvation energies for small alkane compounds. Contrary to many
popular nonpolar solvation models, the SASA derivative contrib-
utes very little to our WCA-like treatment; the most important
elements are derivatives of the SAV and attractive integral terms.
The nonpolar solvation force model presented in this article offers
a substantial improvement over the popular SASA-only and is
sufficiently simple to permit routine use in implicit solvent simu-
lations without a substantial increase in computational overhead.

The failure of SASA models to accurately predict solvation forces
raises serious questions about the validity of their widespread
application in the interpretation of nonpolar contributions to
protein folding, protein—protein binding, and protein-nucleic acid
interactions. In particular, the inaccuracy of SASA-only nonpolar
solvation forces suggests that these models cannot correctly dis-
criminate between different conformational states and therefore
could produce systemic bias when used in simulations or in the
interpretation of experimental thermodynamic data. This sugges-
tion is supported by the alanine dipeptide simulations of Su and
Gallicchio (39), which indicates that implicit solvent simulations
with SASA-only models produce qualitatively inaccurate PMFs.
Further evidence is provided by the work of Drozdov et al. (66),
which demonstrates that peptide—solvent interaction energies for a
variety of alanine dipeptide show weak anticorrelation with SASA.
The accurate treatment of nonpolar energies and forces is vital for
understanding any biomolecular process that involves substantial
changes in solvent accessibility, e.g., binding free energies, folding
and stability, or even equilibrium fluctuations of biomolecules with
highly flexible loops. The inability of SASA-only models to provide
such accuracy indicates a need to move to a more complete
nonpolar theory in both simulations and the interpretation of
experimental data.

Computational Methods

Protein Conformational Sampling. Implicit and explicit solvation
forces and energies were compared (see below) for a set of eight
conformations of the IFABP. These conformations were obtained,
as described (47), from conformational clustering of 2.5-ns molec-
ular dynamics simulation starting from an IFABP NMR model
(Protein Data Bank ID code 1AEL) (67) in the presence of ~160
mM NaCl (25 Na™ and 26 CI~ ions). The simulation was performed
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at 300 K and 1 atm pressure by using AMBER 7 software (68) with
the AMBERY4 force field (69).

Explicit Solvent Sampling. We obtained mean nonpolar solvation
quantities of the form in Eq. 4 from explicit solvent simulations of
IFABP as described (47). TIP3P (transferable intermolecular po-
tential 3 point) (70) solvent configurations were sampled around
each of the eight static conformations of IFABP (described above).
Solvent sampling was performed for each of the IFABP confor-
mations with the IFABP structure constrained by the belly dynam-
ics algorithm (68). To simulate the nonpolar ensemble, electrostatic
solute-solvent interactions are turned off by setting the protein
charges to zero. Snapshots were taken every 4 ps, resulting in 250
conformations for each trajectory used in the analyses. Mean
solvation forces were calculated by averaging over these conforma-
tions. The exact average of a quantity g in Eq. 6 was approximated
by (@)np ~ J 1q(x(t))) for M solvent configuration snapshots x(t)
from the nonpolar ensemble simulations. The repulsive and attrac-
tive explicit solvent LJ forces were calculated by averaging the
derivatives of " and u{*" as defined above for each atom.

Implicit Solvent Model Implementation. All of the implicit nonpolar
solvation models described above have been implemented in a
developmental version of the APBs electrostatics package (57),
which is available from http://apbs.sf.net. For the integral-based
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accessible surfaces (e.g., for use in calculating 4 and I';) discretized
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Waals radii for g; (69). As described above, the value of o (solvent
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We calculated surface area derivatives via finite differencing
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lished as supporting information on the PNAS web site.
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Corrections

CHEMISTRY, BIOPHYSICS. For the article “Assessing implicit models
for nonpolar mean solvation forces: The importance of disper-
sion and volume terms,” by Jason A. Wagoner and Nathan A.
Baker, which appeared in issue 22, May 30, 2006, of Proc Natl
Acad Sci USA (103:8331-8336; first published May 18, 2006;
10.1073 /pnas.0600118103), the authors note that an error in the
implementation of Eq. 10 in the original paper led to improper
scaling of the solvent-accessible volume forces for highly exposed

surface atoms. The error in the original implementation of Eq.
10 affects Tables 1 and 2 of the original manuscript as well as
Tables 3 and 4 and Figs. 2 B and C and 3 in the original
supporting information. Corrected versions of Tables 1 and 2
appear below. A correction to the supporting information has
been published online. This error does not affect the conclusions
of the article.

Table 1. Optimized 6/12 and WCA implicit solvent nonpolar MF parameter values and goodness-of-fit metrics

MF model 6/12

MF model WCA

Parameters Attractive Repulsive Total Attractive Repulsive Total
o5, A 0.89 [0.87-0.91] 1.29 [1.16-1.44] 1.68 [1.57-1.80] 0.8 [0.73-0.86] 1.29 [1.18-1.41] 1.25[1.16-1.39]
v, cal-mol~1-A-2 — 15(1) 1(1) — 2(1) 0(1)
p, cal'mol~1-A-3 — 94(2) 55(2) — 52(2) 55(2)
r 0.88 0.56 0.83 0.84 0.87 0.86
R 0.97 0.91 0.94 0.97 0.94 0.94
X% 1073 kcal>mol-2-A-2 6.99 3.35 6.47 0.56 4.87 4.63

Separate fits of nonpolar solvation MFs were performed as follows: Attractive, a comparison of attractive implicit (Eq. 15) and attractive explicit; Repulsive,
acomparison of repulsive implicit (Eg. 10) and repulsive explicit; and Total, a comparison of the total implicit (Eq. 21) and total explicit (Eq. 8) nonpolar MFs. Where
applicable, standard errors are presented in parentheses; 99% confidence intervals (see text) are presented in brackets.

Table 2. Comparison of total solvation energies (kcal/mol) for
small alkane solutes

Compound WCA 1.25 WCAO0.65 OPLS AMBER  Exp.
Methane 6.40 1.93 2.40 2.69 2.00
Ethane 8.41 2.25 2.63 — 1.83
Propane 10.5 2.84 2.89 3.02 1.96
Butane 11.8 2.93 3.21 3.19 2.08
Pentane 13.7 3.48 3.78 — 2.33
Hexane 15.6 3.90 3.78 — 2.49
Isobutane 12.0 3.16 3.03 3.27 2.52
2-Methylbutane 13.4 3.45 3.51 — 2.38
Neopentane 13.2 3.46 3.23 — 2.50
Cyclopentane 11.3 2.25 2.80 —_ 1.20
Cyclohexane 13.7 3.18 2.34 — 1.23

WCA energy values were obtained by using the methods described in the
text with o5 = 1.25 and 0.65 A. OPLS energies were taken from Gallicchio et al.
(35) by using values in table 2 of their paper. AMBER energies are from Shirts
etal. (64), 'van der Waals’ values in table Il of their paper. Experimental (Exp.)
values are from table VII of Cabini et al. (65).
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NEUROSCIENCE. For the article “Loss of AP-3 function affects  which appeared in issue 44, October 31, 2006, of Proc Natl Acad Sci
spontaneous and evoked release at hippocampal mossy fiber syn-  USA (103:16562-16567; first published October 20, 2006; 10.1073/
apses,” by Anita Scheuber, Rachel Rudge, Lydia Danglot, Graca  pnas.0603511103), the authors note that Fig. 3g was labeled incor-
Raposo, Thomas Binz, Jean-Christophe Poncer, and Thierry Galli,  rectly. The corrected figure and its legend appear below.
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Fig.3. Ca-independent quantal release at excitatory synapses on CA3 cells in control and mocha cultured slices. (a) Representative traces of mEPSCs recorded
in CA3 pyramidal cells from control (+/—) and mocha (—/-) cultures, treated or not with TeNT. (b) Averaged mEPSCs (=~100) detected from the above recordings.
Black traces, control; blue traces, after TeNT treatment. No difference in their rate of either onset or decay was apparent. (c) (Left) Average amplitude of mEPSCs
recorded in all four conditions. No significant difference was observed (n = 7, 9, 11, and 8 cells, respectively; P > 0.05). (Right) Cumulative amplitude histograms
from the same four data sets. The distributions were not significantly different (Kolmogorov-Smirnov test, P > 0.05). (d) Mean frequencies of mEPSCs were
significantly different between control and TeNT-treated cultures in both control and mocha cultures (P < 0.005 and P < 0.05, respectively). mEPSC frequency
was also different in control vs. mocha culture in the absence of TeNT (P < 0.05). (e) mocha culture slices treated with TeNT for 72 h were fixed and labeled with
antibodies against SNAP25 (red), TeNT (green), and DAPI (blue). The whole surface of the explant can be visualized by either DAPI (nucleus) or SNAP25 (neuronal
plasma membrane). Note that TeNT staining is uniformly distributed, confirming the extended penetration of the toxin. (Scale bar, 200 um.) (f) Culture slices
used in electrophysiological recordings were lysed and analyzed by Western blotting with antibodies against AP-35, Syb2, and actin (as a loading control). A72-h
treatment with TeNT resulted in efficient cleavage of Syb2, although quantification of the remaining Syb2 revealed a 2-fold increase in TeNT-resistant Syb2 in
mocha slices [mean = SEM; control 17.83 =+ 2.35, n = 6; mocha 37.58 + 6.31, n = 6; P < 0.015 (Mann-Whitney rank sum test)]. (g) mocha-cultured slices treated
with or without TeNT for 72 h were fixed and labeled with antibodies against Syp (green), Syb2 (red), and DAPI (blue). Note that the remaining Syb2 labeling
after TeNT treatment is very faint. The rare remaining Syb2 puncta are mainly synaptic. (Scale bar, 50 um.)

www.pnas.org/cgi/doi/10.1073/pnas.0611561104
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