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Abstract. This paper presents an algorithm for the efficient numerical analysis and simulation of
modest to heavily constrained multi-rigid-body dynamic systems. The algorithm can accommodate
the spatial motion of general multi-rigid-body systems containing arbitrarily many closed loops in
O (n 4 m) operations overall for systems containing n generalized coordinates, and m independent
algebraic constraints. The presented approach does not suffer from the performance (speed) penalty
encountered by most other of the so-called ‘O(n)’ state-space formulations, when dealing with
constraints which tend to actually show O(n + m + nm + nm? + m3) performance. Additionally,
these latter formulations may require additional constraint violation stabilization procedures (e.g.
Baumgarte’s method, coordinate partitioning, etc.) which can contribute significant additional com-
putation. The presented method suffers less from this difficulty because the loop closure constraints
at both the velocity and acceleration level are directly embedded within the formulation. Due to
these characteristics, the presented algorithm offers superior computing performance relative to other
methods in situations involving both large n and m.
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Nomenclature

ak = matrix representation of acceleration of center of mass k* in the Newtonian reference
frame N

gﬂ‘ = acceleration remainder term associated with body k in N; This is all terms of gk
which are not explicit in #’s

ﬁk = the generalized acceleration matrix of body k in N

Ak = that portion of the generalized acceleration matrix of body & in N which is explicit
in the unknown state derivatives i

Aﬂ‘ = that portion of the generalized acceleration matrix of body k in N which is not
explicit in the unknown state derivatives i

O’Ak = the generalized acceleration matrix of k; in reference frame 0;, which are associated
with closed loop i

itk . . . . . L. L

O’ﬁ = that portion of the generalized acceleration matrix of k; in O; which is explicit in
the unknown state derivatives i

0.

’Aé‘ = that portion of the generalized acceleration matrix of k; in 0; which is not explicit in
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the unknown state derivatives

C = invertible transformation matrix relating ¢ to u

C = direction cosine matrix relating the basis vectors fixed in body k to those
in proximal body Pr[k]

Dist[k] = distal body set associated with body k&

D = matrix used in relating ¢ to ¥, and commonly associated with prescribed motions

E; = expansion matrix which converts m; constraint load measure numbers to constraint
load matrix ¥,

F k = recursive generalized force matrix for body k

f k = articulated body force associated with body k

0i£ k = articulated body force associated with body k for 0; < k; < p;

I o = matrix representation of constraint force used to close i-th closed loop

Fe, = constraint load matrix i-th closed loop

I*/ k= = central inertia matrix of body k

ik = generalized inertia matrix of body k

i = articulated body inertia matrix of body k, associated with acceleration Ak

Olik = articulated body inertia matrix of body k, associated with acceleration ng

i 0 = articulated body inertia matrix of body k, associated with acceleration ATO"

k = index representing an arbitrary system body k (global numbering)

k; = index representing an arbitrary body k within closed loop i (local loop numbering)

k* = center of mass of body k

K = right-hand side of system equations of motion, representing applied forces, as well as
centripetal and Coriolis portions of inertia forces

m = total number of independent system constraints

m; = total number of constraints associated with closed loop i

M = system mass matrix

My = matrix of terms associated with generalized speed u; which would be found on the
diagonal of a partially triangularized (decomposed) system mass matrix

n = total number of system generalized coordinates

n; = total number of generalized coordinates associated with i-th closed

loop constraint equations

nr, = total number of closed loops

N = Newtonian reference frame

0; = base body (primary reference frame) of closed loop i

Di = body containing the highest independent degree-of-freedom (local loop numbering)
within closed loop i

2% = partial velocity matrix for body k associated with generalized speeds u,.
2 - = nonholonomic partial velocity matrix for body k associated with
independent generalized speeds u,.
Prlk] = proximal (parent) body set associated with body k
q = the n x 1 matrix of generalized coordinates used to describe the configuration

of the system

q = the first time derivative of the system generalized coordinates
Ek = matrix representation of resultant of all nonconstraint forces acting on body &
sk = basis consistent shift matrix which converts system of forces acting through

mass center of k to equivalent system acting through point of k
instantaneously coincident with the mass center of its proximal body Pr[k]
igk = shift matrix which transforms a force system acting through mass center of k£ to an
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equivalent system acting through point of k, instantaneously coincident with the
mass center of body j

t = time

.. = matrix representation of constraint torque used do close i-th closed loop

Z?‘ = matrix representation of all moments acting on body k

Zk = local triangularization matrix associated with body k

if( = constraint load triangularization matrix associated with body & and closed loop i
u = the system generalized speeds which characterize the motion of the system

Uy = system generalized speeds which are directly associated with the motion of body k

relative to its parent body
= system generalized accelerations to be determined and temporally integrated

iy, = system generalized accelerations which are directly associated with the motion of
body k relative to its parent body

U = appropriately dimensioned identity matrix

v = velocity of the center of mass of body k in reference frame N

vlr‘* = partial velocity of the center of mass of body k in reference frame N
associated with u,

vf* = velocity remainder term associated with the center of mass of
body k in reference frame N

2" = the generalized velocity matrix, which relates the velocity
of body k to reference frame N

ﬂk = portion of the body k generalized velocity matrix which is explicit in the
generalized speeds u

X;‘ = body k generalized velocity remainder term matrix, which relates the velocity
of body k to reference frame N

0i 2/‘ = the generalized velocity matrix, which relates the velocity of k; mass center to that
of loop base body 0;

Oijk = portion of the generalized velocity matrix Oizk, which is explicit in the
generalized speeds u

0 th = that portion of the generalized velocity matrix Oizk, which is not explicit in the
generalized speeds u

ok = angular acceleration of body k in Newtonian reference frame N

af‘ = angular acceleration remainder terms of body k; this represents all terms of ok
which are not explicit in #’s

5/ = useful intermediate quantity associated with recursive treatment of dependent
generalized speeds and associated state derivatives of the closed loop
under consideration

éki = useful intermediate quantity associated with recursive treatment of body k; of the
closed loop under consideration

rk = position vector from body Pr[k] mass center to body k mass center

Lk = useful intermediate quantity associated with recursive treatment of dependent
degrees of freedom of body k within the closed loop under consideration

¢ i‘ = coefficient matrix to unknown constraint load measure numbers A; associated with
loop i within expression for constrained system generalized acceleration

ék = intermediate quantity useful in the recursive determination of gf‘

k = portion of constrained system generalized accelerations # which is not explicit
- in constraint load measure numbers A
~k

n = intermediate quantity useful in the recursive determination of nk
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@k = intermediate quantity appearing in the solution for coupled loop systems

A = Lagrange multipliers

ki = useful intermediate quantity associated with recursive treatment of body k; of
the closed loop under consideration

gk = useful intermediate quantity associated with recursive treatment of dependent

degrees of freedom of body k within the closed loop under consideration

P = set of m system algebraic constraint equations
@, = system constraint Jacobian
Xpi"j = useful intermediate quantity associated with recursive treatment of dependent
N generalized speeds and associated state derivatives p 4 j of the
closed loop under consideration
v = portion of velocity level constraint equations which is not explicit in
generalized speeds u; this term is usually associated with specified motions
v = portion of acceleration level constraint equations which is not explicit in
- generalized speeds time derivatives &
wk = angular velocity of body k in reference frame N
w’r‘ = partial angular velocity of body k in reference frame N associated with u,
wf = angular velocity remainder term associated with body k in reference frame N
Q]; = matrix equivalent to vector cross-product wkx

1. Introduction

Computational efficiency of multibody system simulations has been receiving
increasing attention since the first O (n) (computational effort per temporal integ-
ration step increases as linear function of the number of generalized coordinates)
algorithm developed by Vereshchagin in 1975 [30]. This work marked a significant
departure in potential algorithm computational cost from that possible with more
traditional formulations, which tended to offer O(n®) (the number of computa-
tional operations required for each temporal integration step increases as a cubic
function of n). Since that ground-breaking work, a myriad of formulations and
algorithms have been put forward by individuals whose interests lay in a wide
variety of fields [1, 5-8, 12, 15, 20, 26, 28, 31]. Much of this has been done in an
effort to develop more efficient, yet general simulation algorithms for multibody
systems. In many of these situations, computational efficiency, which manifests
itself in the form of computational speed, was of primary importance.

To this end, researchers have tried to improve the overall computational ef-
ficiency through vastly different approaches. Some researchers have pursued
improved simulation speed through the use of different dynamic analysis methods
for multibody systems, such as the methods based on Newton—Euler equations
[4, 31], Lagrangian equations [15], Kane’s equations [1, 7, 26], and variational
methods [5, 6]. Others have pursued improved simulation speed through develop-
ing new more efficient underlying algorithms for the forward dynamics problem,
such as O(n?), O(n?) [20, 31] and O(n) algorithms [4, 5, 8, 12, 13]. While still
other researchers have directed their attention to more efficient implementation of
mathematical operations within existing formulations. Whichever avenue is pur-
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sued, the dynamical equations of motions are most generally expressed in the
form

u=C(g.1)-q+ D(g), (la)
M(g,t;g)'£+2Tg(g,t;g)-&=£(g,g,t;g), (1b)
@(g.1; p) =0. (1)

In each of these sets of equations g represents the set of n system generalized
coordinates, with associated first time derivatives ¢. The matrix C appearing in
Equation (la) is a user specified invertible matrix which maps the set ¢ into the
generalized speeds [18] u, which are velocity level quasi-coordinates which can
facilitate the characterization of the motion of the system. By comparison, matrix
D in Equation (la) is that portion of the definition of ¥ which results from spe-
cified/prescribed motions which appear within the system. The matrix M is termed
the system ‘mass matrix’ (though the system need not be purely mechanical in
nature), while K is a column matrix containing contributions of all forcing terms,
body loads, as well as centripetal and Coriolis acceleration inertia load contri-
butions. The quantity ® , is the constraint Jacobian associated with the partial
derivative of the m independent algebraic constraint equations represented by (1c)
with respect to g.

In Equations (1) the state variables may be redundant, often representing po-
sition, orientation, temperature, pressure, voltage, etc. and their respective deriv-
atives. If a redundancy exists, then generalized constraint ‘forces’ A must be ap-
plied to the system equations of motion (1b) to enforce the algebraic constraint
equations (1c).

When traditional state-space dynamic analysis formulations are employed a
computational cost of O (n?), is inevitable to produce M explicitly, if special meth-
ods are not used. If simple recursive relationships are observed, then the cost of
generating M can be reduced to O (n?) [20, 25]. However, an additional O (n?®) cost
is incurred for the mass matrix decomposition required in solving Equation (1b) for
the unknown state derivatives u by direct methods. This expense may be acceptable
for a system involving small to modest n, but an O(n®) increase in computa-
tional cost can become prohibitively expensive for even a modest increase of n.
Fortunately, this prohibitive operational order can be greatly reduced through the
intelligent use of efficient (often lower computational order) dynamic formulations.

2. Standard Recursive ‘O(n)’ Analysis for Constrained Systems

When analyzing closed loop systems (systems containing kinematic loops) with
most state-space O (n) formulations, the closed loop system is first converted to
an open tree system. This is accomplished by cutting the closed loops at specified
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(A) General Multibody System

(B) Associated Open Loop System

Figure 1. General closed loop system schematic and associated tree system.

joints, as indicated in Figure 1. At this time a unique path exits from each body to
every other body in the system. To insure that the new tree system still behaves as
the original closed loop system, explicit equal and opposite constraint forces f. are
added to each side of the cut joints, and the equations of motions are augmented
by the companion set of algebraic constraint equations (1c) which must now be
satisfied.

2.1. MATHEMATICAL PRELIMINARIES

To aid in the subsequent development, consider the notation associated with the
description of an arbitrary set of interconnected rigid bodies shown in Figure 2. For
this system, proximal (parent) body Pr[k] is connected to its child body k through
joint-k, via joint points k<~ and k* which reside in bodies Pr[k] and k, respectively.
Similarly, the distal (child) bodies of body k are given as members of the set of
bodies Dist[k]. The position vector s* locates joint-k relative to the mass center
of body Pr{k], while the position vector r* locates the mass center of body k with
respect to the outboard end of this same joint. It will also prove convenient to
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Dist[k]"

Joint k

Figure 2. Notation associated with an arbitrary set of interconnected rigid bodies.

describe the position of child mass center k* relative to proximal mass center Pr[k]*
by the vector p*.

The angular velocity of any body k with respect to the Newtonian reference
frame N, and velocity of its associated mass center k* may always be written in
terms of the generalized speeds as

o' =) wfu, + o} 2)
r=1
and
V=DV v 3)
r=1

In these expressions * and V€ are termed the r-th partial angular velocity of
body k and r-th partial velocity of point k*, in N, respectively. These quantities
may be thought of as basis vectors for the space of admissible system velocit-
ies and angular velocities, while the associated generalized speeds are the ve-
locity space measure numbers. Additionally, the terms * and v¥" appearing in
Equations (2-3), are referred to as the angular velocity remainder term of body
k and velocity remainder term of point k*, in N, respectively. These quantities are
most often associated with specified/prescribed motion, and thus are not associated
with the time derivative of a system degree of freedom.

When deriving this method it is often convenient to express quantities in a
scalar matrix, as opposed to a tensor (vector and dyadic) form. For this purpose
an arbitrary vector ¥¥ will be represented in matrix form as 9%, which is associated
with the local dextral orthogonal unit vectors ki, k>, k3, fixed in body k. One may
then define the velocity, partial velocity, and velocity remainder term matrices as
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C()k a)k a)k
2":[5,(* , Pk = ;k , and Vf= i‘* ) 4)

With these matrices so defined, Equations (2) and (3) may be expressed as
VE= T V=3 P, + VL )
r=1

One can similarly represent the generalized acceleration matrix of an arbitrary body
k as defined in previous works [1, 2], as

-[f]
2 N ’

a

where A% may also be divided into two portions. One is Ak, which contains all
terms which are explicit in the unknown state derivatives & and the other is the
acceleration remainder term éf, which represents all of the other acceleration
terms (and may be calculated directly from the system state), giving

A= A"+ AL )

2.2. RECURSIVE KINEMATIC RELATIONSHIPS

With the generalized velocity, generalized acceleration, and generalized acceler-
ation remainder term matrices so represented, it is possible to compactly rep-
resent the recursive relationships necessary for determining all system kinematic
quantities. As has been demonstrated in [1, 2] we have

k _ [(ék)TzPr[k] kuk] + .«Vk (8)
and
k _ [(ék)TAPr[k] kuk] + Ak (9)

The quantity 8% appearing in Equations (8-9) is the basis consistent linear
transformation matrix

@k @kyk
8= [— —k—x} (10)
0 ¢ 6x6

Within this expression C* = PlX@* 5 the direction cosine matrix which relates
the body k basis vectors to those fixed in its parent body Pr[k]; 0 is a 3 x 3 zero
matrix; and y i is the skew symmetric matrix equivalent to the vector cross product

operation y* x. The shift matrix transformation $* converts a system of forces and
moments acting through the center of mass of k, to an equivalent force system,
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acting though a point of k£ which is instantaneously coincident with the center of
mass of Pr[k].

At this time, it is also convenient to define the body k generalized inertia 4 *
and the body k generalized force ¥ * matrices

IM¥ g
l"z[— —k] : (1)
Q M 6x6
Tk_(]k/k*ak + Cl)k Ik/k*a)k)
Ek:[_ ook gk kT . (12)
E _M Qt 6x1

Within these expressions, I¥/%" is the 3 x 3 central inertia matrix of body k, and
M is the diagonal translational mass matrix of this same body. By comparison T*
and R represent the resultant force system of all moments and forces, respectively,
acting on body k through its center of mass k*.

2.3. TRIANGULARIZATION OF EQUATIONS AND STANDARD ‘O(N)’
TREATMENT OF CONSTRAINTS

In most state space order-n methods the reduction in the computational order of
the overall cost of determining values for the unknown state derivatives u is largely
accomplished by avoiding the formulation of the coupled set of equations of mo-
tion. The approach further reduces computational burden because it eliminates the
need to subsequently decompose and solve these equations for their unknown state
derivatives.

Avoiding the formulation of the explicit coupled system of equations is to a
significant part accomplished through the segregation of accelerations into the
known state dependent portion ﬁf and that portion which is explicit (and linear)

in the unknown state derivatives, ﬁk. In this manner, unknown state derivatives u
can be isolated and manipulated (triagularized) as the equations are being formed.
This allows the equations of motion to be produced in what is implicitly equiv-
alent to a lower triangular form, where only the diagonal elements of the system
triangularized mass matrix are explicitly calculated.

In a similar manner, the explicit constraint forces F, associated with the cut
joints which arise in the O(n) treatment of closed loop systems, are recursively
treated [1, 2, 6, 13, 17] and others. In these works, the closed loops are cut to
produce an associated tree system. The explicit constraint forces, which manifest
themselves in A in Equation (1b), are then imposed to insure that the algebraic
constraints (loop closure constraints) (1b), are satisfied.

Just as with the accelerations discussed above, the goal here is to segregate the
applied forces TX and R¥, in (12), from the constraint forces F.. The applied forces
T* and R*, are directly determinable from the force element model and current
system state values. By comparison, the constraint forces F, are unknown, being
linear in the unknown constraint force measure numbers A.
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The segregation of constraint forces into dependent and independent portions
can be accomplished by decomposing the unknown state derivatives u as

i=n+¢h (13)

The quantity 7 appearing within (13), is that portion of # which is independent of
the constraint force measure numbers A, and is exactly the value obtained for i if
the constraints (1c) are not enforced. Thus, the quantity ¢ A may be thought of as a
correction term to the unconstrained state derivatives.

The constraint forces have no influence on the kinematic calculations, so they
only need be considered during and after the recursive triangularization portion of
the O (n) routines. The kinematic portion of the routine consists of the kinematic
calculations working recursively outward from the system base body (system body
without a parent) to the system terminal bodies (system bodies without children).
Once the terminal bodies are reached, the topological direction with which the
calculations proceed reverses, and the routine works recursively inward, from the
terminal bodies to the base-body, forming generalized inertia forces, generalized
applied forces, generalized constraint forces, and triangularizing the equations as
they are formed.

Key quantities which aid in representation of the triangularization process are:
the articulated body inertia and articulated body force, Zk and f k, respectively

. . . . L . =k .
[12]; the local triangularization matrix Ik; the triangularization matrix 7 ; the tri-
angularized mass matrix diagonal elements M, ; and the triangularized constraints

. . . .. =~k
associated with the i-th cut joint (closed loop) ¥ ..
Each of these quantities can be easily determined using the inward (from child
to parent) recursive relationships

=gt Y 7iiei), (14)
jeDist[k]
Fl=Fty Y 7iF, (15)
jeDist[k]
R (16)
= ~k
Eci = Zi (Ei&i), (17)
with
~k
Th=38"U -1 2 M2 (18)
and

M, = (2T Pk (19)



IMPROVED ‘ORDER-N’ PERFORMANCE ALGORITHM 195

where U appearing in (18) is a 6 x 6 identity matrix, and the quantity E; appearing
in (17) is a 6 X m; expansion matrix which converts the m; unknown constraint
load measure numbers in A;, associated with the i-th cut joint 0 = 1,2,...,nz),
to the associated constraint forces f . and moments ¢ .. Specifically, E; provides

the linear transformation such that
F = Lo | 2 E A (20)
< ¢ T iq - =il

It can be shown [1, 2, 26] that with these triangularized quantities so defined,
the equation of motion directly associated with the generalized speed u; can be
given as

ny ny
2" [i" = (ﬁ" + Zéf&,) + Zifﬁi&i} =0, 1)
i=1 i=1

where

ﬁk _ @k)TﬁPr[k] +£l;<ﬂk’ 22)
and

éf = (ék)Tgr[k] +£’}{gf G=1,...,n;). (23)

2.4. FORWARD SUBSTITUTION AND STANDARD ‘O(N)’ TREATMENT OF
CONSTRAINTS

The triangularization procedure works recursively inward from terminal bodies,
towards the system base body (that body of the system which connects the system
to the inertial reference frame) producing a system of equations which are impli-
citly equal to the triangularized equations. Once the system base body is reached,
Equations (20-23) give that

_ =1
n' =M PHTF, (24)

and
¢l = MNP TE,. (25)

All information associated with the right-hand sides of Equations (24) and (25) is
known. Thus the process may now reverse its direction with respect to the system
topology, and recursively perform a forward substitution for the determination of
n* and {f,‘. This forward substitution process is accomplished through the recursive
use of

ﬁk — @k)TﬁPr[k] +£/;(Qk’ (26)
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— =k ~k —Pr
= MIPOT[FE - T @HTi"M], 27)
and
éf‘ _ (ék)Téf)r[k] +£1;<£f’ (28)
_ =k ~k =Pr[k]
=M PTE -4 85 (29)

2.5. STANDARD ‘O(N)’ TREATMENT OF CONSTRAINTS

Unfortunately, determining n (axc1) and ¢ (nxm) through use of Equations (24 -29),

Equation (13) still leaves the m unknowns A, to be determined. Thus one must
make use of the m additional constraint equations

(@ Ju=V (30)

which are obtained through the differentiation of Equation (1c) with respect to
time. Differentiating this expression once more with respect to time yields

@ i =v. (D)
Substituting the expression for i, from Equation (13), into this expression produces
(@, cl={y -2, ) (32)

which one may solve to obtain the constraint load measure numbers A. These values
for A are in turn substituted back into expression (13), yielding the numerical values
for u.

2.6. DIFFICULTIES WITH THE STANDARD ‘O(N)’ TREATMENT OF
CONSTRAINTS

If one now looks more closely at the steps involved with the determination of the
specific quantities 1, ¢, and A, which are used in determining the unknown state
derivatives i it can be seen that: The determination of 7 requires O (1) operations;
¢ requires O (nm) operations; and A requires O (nm + nm? 4+ m?) operations. As a
result, the overall cost associated with the determination of i with these standard
so called ‘O (n)’ approaches is actually O(n + nm + nm?* + m?).

It should be noted that this cost does not consider the added computation, which
may be necessary for some systems, to stabilize constraint violation error growth.
Methods which may be considered in this regard are Baumgarte’s method [9],
Coordinate Fartitioning [32, 33], or other forms of constraint error stabilization
[1, 2, 22], each of which can be shown to contribute an additional O (nm?* + m?>)
operations to the overall computational cost.



IMPROVED ‘ORDER-N’ PERFORMANCE ALGORITHM 197

Thus it is apparent that these so-called ‘O (n)’ approaches for closed loop sys-
tems may perform very well in situations where both n >> 1 and n > m. However,
if n and m are comparable in size (i.e. m is O(n)), then these ‘O(n)’ state space
methods actually yield O(n?) performance, and will often be out performed by
other more traditional O (n>) methods.

Difficulties which arise in the application of the standard state space ‘O(n)’
approach to moderately (m ~ n) constrained, or heavily (m > n) constrained
systems have several sources. First, using this more standard O (n) approach, the m;
unknown constraint load measure numbers A, manifesting themselves in ¥, (i =
1,...,ny) are each individually passed (operated on) by each ancestral body (i.e.
every body which is in the topological path between the application point of the
constraint load and the system base body). This results in an O (nm) expense for
calculating these constraint force related terms within the equations of motion (13).
It would be desirable to reduce, if not eliminate the need to operate on all constraint
load unknowns by so many of the system bodies.

Second, the generation of the system level constraint Jacobian & ., requires
potentially O (nm) operations. Worse still, the matrix manipulations, and decom-
position and solve operations associated with the the determination of A, in Equa-
tions (31) and (32) requires O (nm + nm?* + m3) operations. Again, it would be
desirable to eliminate the explicit formulation of Equations (31) and (32), and
subsequent solution for A.

Third, as indicated above, a method such as coordinate partitioning, for reducing
constraint violation error is required with an additional computational burden of
O (nm +nm?+m?). This cost can be significantly reduced by effectively applying
the method in a more efficient manner, recursively employing it in the original
generation of the constrained equations of motion.

3. Fully Recursive Coordinate Reduction for Closed Loop Systems

The primary computational efficiency gains associated with the new O(n + m)
method presented in this paper, relative to other O(n) closed loop approaches
[1-3, 6, 7, 13] are realized through the local and kinematic manner in which the
loops are treated. To aid in this development, consider the generic closed loop i
(i=1,...,n.),shown in Figure 3. This loop development involves many symbols
and expressions which are extremely similar in form and meaning to those which
are associated with the global treatment (description) of the system. For this reason,
all quantities which are specifically associated with the treatment of closed loops
in this development will be denoted by a subscript i (e.g. k represents body-k of
the system, while k; represents the body-k of the close loop i under consideration).
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Generic Loop Pi-

Figure 3. Local numbering scheme of generic loop.

3.1. LOCAL CLOSED LOOP KINEMATICS

The process begins by selecting the body which branches to form the i-th closed
loop to act as the loop sub-system’s primary reference frame. This body is locally
referred to as the loop base body and is given the local body number 0;. The bodies
of the loop are then locally numbered consecutively, up through local body number
n;. Where n; is the number of bodies which form the i-th closed loop and the last
body n; is a massless copy (or phantom) of the loop base body. Figure 4 illustrates
the tree representation of the generic loop of Figure 3.

Within the closed loop the recursive velocity and acceleration relationships, (8)
and (9) still apply. At the terminal end of the loop, the phantom body »; must then
have zero velocity and acceleration relative to the reference frame (body) 0;. Thus,
from Equation (8) we have

1

Oizni — (én,-)T Oizm— +£71iiuni +0i2tni — Q (33)

Pre-multiplying (33) through by (" )T and then solving for the dependent gener-
alized speeds u,, yields

u, =12 2@ )T MY Yy, (34)
Similarly, from Equations (9) and (32), we have at the acceleration level

. ni ni 1— ni n 0;7ni—1 0/

i, = =[P PETHE@HTIE™T A" + AN} (35)

Appropriately substituting (34) into (33) produces

n; n; 0i ni—1 0; ni1 __
@M YT+ Ty =0, (36)
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Generic Loop P;-

Virtual Terminal
Body

Loopi

Dependent
Coordinates

N A\_P’hantom Body
(copy of 0i)

Figure 4. Tree representation of the generic loop (Figure 3) using a phantom body.

with

A" = (@) 2 GD
and

=0 — £,:1,-i (éni)—l(£;’11ii)T‘ (38)
Continuing the process, we have

(@ {@m )T "B T 2, 4 Y] =0 (39)
Premultiplying this by (ir,lf,-_—ll)Té ", then solving the resulting equation for u,
yields

1 = (A" )TN TDTE T [T @) BT+ v, @0)
where

A = (@S e 2 @

Substituting (40) back into (39) yields
[z =@ 2T @A T (@I 8 )
x[@")" @ H v 4y =0, (42)
Defining the following recursive relationships for intermediate quantities

n,-éni :Q = k—lé"i — k_lék kén,- :ék kén,-’ (43)
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"t =U
= Lk — [Lk+l _£k+l(kéni)T£l;<(ék)—l(£};{)Tk§nizk+l]’ (44)
A= (2T PR, (45)

we write the recursive relationships

Oiﬂk _ Qk oizk—l +lk Oiytn,-’ (46)
and

U, = —(AH~1(Ph)T kén,-lkﬂ[(k—lén,-)r Oizk—l +0,-2tn,-]’ (47)
with

1= —2h@ahHT @ s “
and

8 =@+ xk ¢l @

The process may be continued, allowing all terms associated with the dependent
degrees of freedom to be expressed in terms of the independent generalized speeds
uy,—u, and their derivatives, namely

BCARS GRS S A (50)
and

w, = —(AH (2P g

x [{¢18m)T THY D 4 (-l BF 4+ Uy v, 51)

where

[P =U, and M= gkirk, (52)
and

EP =0, and T = gkHigh o k1 (53)

Similarly, at the acceleration level we have

A=A U (54)
and

iy = —(AH (PP g

x [(¢'8m)T THR™ + (8™ EF + UYW"]. (55)
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3.2. LOCAL CLOSED LOOP KINETICS

At this point sufficient kinematic quantities are available that one may start the
process of assembling the equations of motion associated with the constrained
degrees of freedom within this loop.

It can be shown [1, 2, 26] that due to the use of relative coordinates, the equation
of motion associated with degree of freedom p, which immediately precedes the
last m bodies of a tree system may be written as

pi+m; L
DY@ )TLA - FH =0 (56)
k=pi
In situations involving nonholonomic constraints, this equation becomes
pi+mi . '
Y@ )EA - FH =0, (57)
k=pi
where J (’f; is the nonholonomic spatial partial velocity of body k associated with
independent generalized speed p;. These nonholomonic partial velocities are those

which result once the nonholonomic constraints have been used to eliminate the
dependent generalized speeds and their derivatives from all expressions. Making

use of Equation (5) and the definitions for £’;i @), Ofé k(43), and Oijk (50) these
nonholonomic spatial partial velocities are given by
=k
pto_ 0%
—Pi B Up,

= a[(0»3)17 +791

It p,

9 —o - _
= [P + @ "D+ 2t )]
It p,

= [k pr (58)

- —Pz

Also, it is helpful to note that the accelerations Ak appearing in Equation (57)
may be rewritten in terms of Aoi and O'Ak. Specifically, for the situation where
0; <k <pi
A= 89T A+ (59)

Substituting relations (54) into (59), with this result in turn substituted into equation
(57) along with (58) yields

pi+m; x

@A -FH =0

k=pi
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pit+mi
i\T KNT ( gk 7K kY _
= (@07 Y @CHT (LA -F) =0
k=pi
P 0 0i7k
= (@07 2 @HNHLO8H A + AT - £} =0
k=pi
pi+m; o O 0
= @)" 3 @O L[OHTA" + @ R 2 W] - £ =0
k=pi;
pitmi o p+m; 0
= (@] Do @HLOSHT AT+ | Y @HT LT A"
k=p; k=p
pitm; p+m;
+ Y @HTLE W - | Y @HTE | =0
k=pi; k=p
71 PO =0;  Oiapi O;zp;  Oi 2pi
= (@ A+ AT -TE ] =0, (60)

What is left is effectively a new virtual terminal body p;, as indicated in Fig-
C oy . . . . Apis0; 0; ~pi
ure 4, which is represented by multiple inertia properties 4. " and lp , as well as

applied forces O'£ " Inspection of Equations (43—49), (52-54), and (57— 60) in-
dicate that the production of these quantities requires only O (m;) additional opera-
tions beyond those required for the recursive determination of kinematic quantities
of the associated unconstrained system. This is due to the fact that the operations
indicated by Equations (43—60), are recursive in nature and as a rule consist of
a fixed number of multiplication and addition operations per body. Additionally,
these virtual bodies have embedded within them all the affects of the m; con-
straints associated with closed loop i (i = 1,2,...,ny) at both the velocity and
acceleration levels. Most importantly, these virtual bodies, and all of their associ-
ated properties may be treated effectively as unconstrained bodies in the general
unconstrained O (n) state-space formulation.

~pi;0i  0i~p; 0i 2 pi . . . .
Indeed, the terms IH , IH ,and F ’ may be recursively triagularized in
much the same manner as the terms in the standard state-space O(n) algorithms

for unconstrained systems. Specifically, for 0; < k < p;

AkiO; —0;  OinkO=k  O; aki
EHTLTA + TR -TE ] =0, (61)
with the recursive relationships
ik_l;oi :ik—l(oiék—l)T +Zk ik;oi, (62)
0; ~k—1

R e L (63)



IMPROVED ‘ORDER-N’ PERFORMANCE ALGORITHM 203

0; ~k— _ 0; ~k
F o gt gk gt (64)

where 7% is our triangularization operation matrix

Th = 84U - "1 2K M) (2] (65)
and
M, = 24T "1 k. (66)

. . . . L 00
The process then continues recursively until body 0; is reached, at Wthh A
. . . . . . ’\k;(),'
0 and the associated inertia term is dropped. At this point { and become

synonymous with ik and £ k, respectively, for k = 0;. The procedure then con-
tinues as an unconstrained system, making use of Equations (14), (15), (19), (24),
(26), and (27).

Once the base body is reached, the algorithm again works recursively outward,
this time performing the recursive forward substitution. For the situation where
the body k being considered lies inboard of body 0;, the recursive relations are
effectively those given by Equations (26) and (27)

— M@ - T sHTA™M, 67)
and
A = @HTA Py, (68)
where
A =0. (69)

For the situations where the body k lies between bodies 0; and p; within a closed
loop i (i.e. 0; < k < p; ), these forward substitution relations are modified to

. _ 0; ~k Ak 0, i - Prlk

i, = M PHT(E 14 it W), (70)
and

A=A + 2l an

The resulting Recursive Coordinate Reduction (RCR) procedure is fundament-
ally the same as the two kinematic formulations appearing in Stajskal and Valdsek
[29]. However it has been formulated independently within the frame work of
Kane’s equations and Anderson’s O (n) algorithm. And, as will be demonstrated,
it is more general.

4. Results

In this section, the equations of Section 3 which describe a method for fully re-
cursive coordinate reduction (RCR) is demonstrated with a simple planar four-bar
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Coordinate Trajectories
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time

Figure 5. Four-bar linkage overlapping trajectories.

mechanism, a planar multi-loop redundant parallel five-bar mechanism, as well
as three variations of a heavily constrained spatial ladder mechanism. The RCR
is shown to exhibit both the expected solution for such mechanisms as well as
superior constraint stability relative to the “Traditional O (n)’ constraint technique.

4.1. CONSTRAINT STABILITY COMPARISON

Both the traditional O (n) constraint formulation and the new method of recursive
coordinate reduction have been used to simulate a four-bar linkage. The result is the
expected overlapping coordinate trajectories of Figure 5, which were obtained us-
ing a fourth order fixed step (0.01 seconds, no error check) Runge—Kutta integrator.
However the displacement error associated with the acceleration level constraint
(AC) enforcement of the more traditional O(n) approach (if no additional form
of constraint stabilization is used), is very different than that of the velocity level
constraint (VC) enforcement which is inherent in the presented RCR formulation,
as shown in Figure 6. One notes that both systems are started with identical initial
conditions (displacement and velocity) which are accurate to nine decimal places,
and the RCR method, which enforces the constraints to machine accuracy at the
velocity level, demonstrates the expected result of a constant rate of drift in dis-
placement at the ninth decimal place. By comparison, the traditional approach,
which enforces the constraints only at the acceleration level, drifts with an expected
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Four—Bar Linkage Displacement Error
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Figure 6. Four-bar linkage accuracy comparison.

logarithmic trend (~ quadratic in time), as was previously demonstrated by Park
and Chiou [22].

The inclusion of superior constraint stability at no additional cost to the method
is a significant improvement in itself.

4.2. PARALLEL MANIPULATORS

Although formulated for single independent (uncoupled) loops, the equations of
Section 3 can be applied exactly as written to all forms of parallel manipulat-
ors. Parallel manipulators are structures which may be decomposed into several
linkages (legs) extending from a common base and terminating at a common end-
effector.

Examples of the resulting topology of arbitrary parallel manipulators are shown
in Figure 7. These examples illustrate that the independent coordinates can all be
assigned consecutively because all legs meet at the single end-effector which is
initially located through the traversal of a series of independent coordinates. Any
remaining independent degrees of freedom are then selected as the coordinates
adjacent to the end effector, and the effects of the dependent coordinates are placed
on the loops’ local virtual terminal bodies p;.

The planar redundant parallel five-bar manipulator of Figure 7 has been im-
plemented with the Recursive Coordinate Reduction method. Figure 8 shows the
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End Effector

Independent
coordinates

Base / /s /

Phantom Base Bodies
(a) (b) Phantom Base Bodies

Figure 7. Examples of parallel manipulators. (a) A redundant parallel five-bar mechanism.
(b) An under-actuated parallel mechanism.

trajectories of the independent coordinates compared with the results of an inde-
pendent multibody package (AUTOLEV).

At this time it is important to separate the RCR method from the O (n) formu-
lation of Saha and Schiehlen [27] which applies strictly to nonredundant parallel
(legged) manipulators. Saha and Schiehlen’s formulation requires that a single in-
dependent coordinate be placed in each leg, thus the broader class of redundant and
under-actuated parallel manipulators mentioned here are outside of the scope of the
work. However, the extension to such systems may be possible, but the resulting
formulation would be as fundamentally different in structure as the selection of
independent coordinates.

4.3. OTHER HEAVILY CONSTRAINED SYSTEMS

Application of recursive coordinate reduction to heavily constrained systems is
demonstrated through simulation of the spatial ladder systems shown in Figure 9.
In these systems, the bodies are connected to ground by two degree of freedom
Hooke’s joints and interconnected in a ladder type formation by single degree
of freedom revolute joints. An arbitrary example of such a system consisting of
L coupled closed loops will involve; N = 2L 4 1 bodies; L phantom bodies;
n = 2N = 4L + 2 generalized coordinates; m = 4L algebraic constraints; yet
only have 2 degrees of freedom. This system represents a situation where previ-
ously developed dynamic simulation and analysis algorithms are likely to pay a
high computational price both for the number of generalized coordinates n and the
number of algebraic constraints m.
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Figure 8. Redundant five-bar manipulator independent coordinate trajectories.
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Figure 9. Schematic of a heavily constrained system.

Direct application of the previous equations to the ladder systems will actually
result in a quadratic growth in the number of computations. This is due to the
fact that each phantom body’s (#;’s) kinematic loop quantities must be related and
computed back to body p;, which requires a linearly increasing effort for each
additional cell (or ladder rung).



208 K.S. ANDERSON AND J.H. CRITCHLEY

To avoid quadratic growth and maintain a linear formulation we note that for
loops sharing a common base body (e.g. 0; = 0;), the following relationships hold
at the connection to the first body in a new cell:

R % (72)
N ST (73)
and
A =h R 2 U (74)
So we may write
WY =8 (@ W+ BN W + 4 (75)
or
R = DV R b (76)
= IV A7+ b + X A W
and for a general body k; we have
R =1 R+ 05+ EY W, (78)

where the definition of " is unchanged and E follows its original recursion of (53)
but is exactly x on the first body in a new cell.

The © term is a known constant which may be propagated forward throughout
the coupled closed loops. On the base body ®% = 0 and the recursion is given by

ef — gk @Pr[k,-]’ (79)
except for any first body which begins a new loop j which is instead given by
@4 = g4 (@PI1 4 EP O, (80)

The additional ® term required for true O(n 4 m) performance becomes part

of the known and applied force term Oiz " in exactly the same manner as the O’ﬂ?‘
terms.

Through appropriate selection of inertia properties, all ladder systems given by
Figure 9 can be made to exhibit the same independent coordinate trajectories (g
and ¢,). Figure 10 shows the independent coordinate trajectories of several such
mechanisms (a cell being an independent closed loop) using recursive coordinate
reduction (RCR) as well as the solution of an equivalent two degree of freedom
spatial pendulum obtained with AUTOLEV.

Figure 11 indicates the performance characteristics for analysis of such a heav-
ily constrained problems: (i) if the system constraints are not considered; (ii) the
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Figure 10. Independent coordinate trajectories of various ladder mechanisms.

system constraints are considered, but the traditional O(n) constraint approach
is used; and, (iii) the RCR algorithm presented here is used. Figure 11 indicates
that in situations, such as this, where the number of constraints m is of the same
order as the number of generalized coordinates 7, then even these so-called ‘Order-
n’ algorithms actually offer O (n?) performance, and generally may not perform
even as well as O(n’)-based algorithms. However, the presented recursive co-
ordinate reduction algorithm does not pay such a price, being linear in both the
number of generalized coordinates n and the number of algebraic constraints m
(e.g. O(n + m)).

4.4. RESTRICTIONS

Application of the method of recursive coordinate reduction has been shown to
produce valid results for a significant class of problems. However, no discussion is
included for systems of coupled loops which do not share a common base body.
The careful observer will also note that multibody systems can be constructed
such that the first n; — m; joint coordinates in a given loop do not constitute a
valid selection of independent coordinates. Moreover, some systems posses singu-
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5 Forward Problem Computational Cost vs. Problem Size
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Figure 11. Computational cost required for forward problem simulation of this spatial ladder
system.

lar configurations with respect to specific independent coordinate selections at and
near which a previously valid coordinate selection is invalid or ill conditioned.
These issues are to be addressed in a forthcoming publication.

5. Conclusions

A new method for fully recursive treatment of constraints has been presented in
the form of the Recursive Coordinate Reduction algorithm. Relative to the com-
mon O (n) constraint method the RCR algorithm exhibits both superior numerical
stability of the constraint relations (with respect to temporal integration), and a
significant reduction in computational order from O(n + mn + m*n + m?) to
O (n 4+ m). The method has demonstrated applicability to a large family of closed
loop multibody systems, and the extension to the complete set is the topic of a
forthcoming publication.
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